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ABSTRACT

Many regulatory RNAs contain long single strands (ssRNA) that adjoin secondary structural elements. Here, we use NMR
spectroscopy to study the dynamic properties of a 12-nucleotide (nt) ssRNA tail derived from the prequeuosine riboswitch
linked to the 3′ end of a 48-nt hairpin. Analysis of chemical shifts, NOE connectivity, 13C spin relaxation, and residual dipolar
coupling data suggests that the first two residues (A25 and U26) in the ssRNA tail stack onto the adjacent helix and assume an
ordered conformation. The following U26-A27 step marks the beginning of an A6-tract and forms an acute pivot point for
substantial motions within the tail, which increase toward the terminal end. Despite substantial internal motions, the ssRNA
tail adopts, on average, an A-form helical conformation that is coaxial with the helix. Our results reveal a surprising degree of
structural and dynamic complexity at the ssRNA–helix junction, which involves a fine balance between order and disorder that
may facilitate efficient pseudoknot formation on ligand recognition.

Keywords: RNA dynamics; prequeuosine riboswitch; residual dipolar couplings; spin relaxation; ligand recognition

INTRODUCTION

Single-stranded RNAs (ssRNAs) are essential elements of
RNA architecture and serve a wide variety of functions.
They can act as spacers between structured domains (Lodeiro
et al. 2009;Watts et al. 2009), provide binding sites for protein
or RNA recognition (Auweter et al. 2006), act as checkpoints
in RNAmaturation (Spitzfaden et al. 2000), serve as signaling
elements that can be sequestered into helices to generate
switching behavior (Schwalbe et al. 2007), and form active
sites to perform catalysis (Shi et al. 2012) and are key compo-
nents of structured motifs such as pseudoknots (Zhang et al.
2011). Secondary structure analysis of RNA genomes and
large structured RNAs reveals a pattern of adenine-enriched
single-stranded regions (Gutell et al. 1985; Pollom et al. 2013).

ssRNAs are frequently considered to be unstructured de-
spite considerable evidence to the contrary in certain se-
quences based on low-resolution structure characterization
techniques such as circular dichroism (CD) and ultraviolet/
visible (UV/Vis) spectroscopy (Dewey and Turner 1979;
Freier et al. 1981). Recently we showed using a combination
of NMR spectroscopy and replica exchange molecular dy-
namics (REMD) simulations that the adenine-rich, 12-nu-
cleotide (nt) ssRNA in the Bacillus subtilis prequeuosine

riboswitch adopts, on average, an A-form-like conformation
with an ordered 6-nt adenine core and gradually increasing
flexibility toward the terminal ends (Eichhorn et al. 2012a).
Together with CD and UV/Vis melting experiments, these
data indicated that the ssRNA is in equilibriumbetween an or-
dered A-form-like helical conformation and a highly disor-
dered partially melted state. Similar observations have since
been made on polycytosine ssRNA sequences using NMR,
UVmelting, and MD simulations, showing that ssRNA order
is not limited to polyadenine sequences (Tubbs et al. 2013).
In RNA, ssRNA regions typically are found linked to heli-

ces and hairpins in what are sometimes referred to as ssRNA–
helix junctions. Studies of ssRNA–helix junctions have large-
ly focused on how ssRNA nucleotides that overhang the 3′

or 5′ termini stabilize the adjacent helix, ignoring the con-
formation and dynamics of the ssRNA residues themselves
(O’Toole et al. 2005, 2006). Recently, Herschlag and cowork-
ers studied the sequence dependence of an ssRNA adjoining
the group I ribozyme to a duplex. The investigators found
that for a three-adenine ssRNA junction, the adjoined duplex
exhibited limited motions; however, a three-uridine junction
greatly increased the duplex motions, nearly doubling the
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effective motional amplitude (Shi et al.
2012; Nguyen et al. 2013). While this
study demonstrates the role of RNA se-
quence on interhelical dynamics and flex-
ibility, little is known about the dynamic
properties of ssRNA–helix junctions at
the atomic level, even though they are
often important sites for conformational
changes and adaptation, particularly for
systems containing pseudoknots (Kim
et al. 2008; Cao and Chen 2009; Cash
et al. 2013). The dynamic properties of
ssRNA–helix junctions are of particu-
lar interest in the transcription-regulat-
ing prequeuosine riboswitch aptamer
because the ssRNA tail must fold back
onto the helix to form a pseudoknot to al-
low efficient cotranscriptional binding to
ligand (Kang et al. 2009; Klein et al. 2009;
Spitale et al. 2009; Rieder et al. 2010;
Suddala et al. 2013). Our previous studies
on the isolated 12-nt ssRNA indicated a
degree of order within the ssRNA that
may facilitate rapid docking into the
minor groove of the adjacent helix in
the presence of ligand (Eichhorn et al.
2012a); however, these studies neglected
the effect of the ssRNA–helix junction.
Here, we examine the effects of local

motions imparted by joining the ssRNA
to a 48-nt hairpin—as occurs in biological RNAs—and also
assess the dynamics of the ssRNA relative to the hairpin.
The ssRNA–helix construct also allowed us to obtain more
reliable estimates for absolute motional amplitudes within
the ssRNA tail by decoupling internal and overall motions.
Such a domain-elongation approach has been successfully
used in the past to characterize motions in helix–junction–
helix (HJH) motifs (Leeper and Varani 2005; Staple and
Butcher 2005; Zhang et al. 2006, 2007, 2010; Getz et al.
2007b; Sun et al. 2007; Zhang and Al-Hashimi 2009).

RESULTS AND DISCUSSION

Construct design and resonance assignments

We previously reported the dynamic properties of an isolated
12-nt ssRNA, hereafter referred to as SS, derived from a B.
subtilis prequeuosine riboswitch (Eichhorn et al. 2012a). We
designed a ssRNA–helix junction construct variant contain-
ing the same 12-nt ssRNA connected to aGC-rich 22-bp hair-
pin capped with the thermodynamically stable cUUCGg
tetraloop (E-SS) (Fig. 1A). The ssRNA is adjoined at the 3′

end of the helix, analogous to its position in thewild-type pre-
queuosine riboswitch. The GC-rich helix incorporates three
isotopically (13C/15N) labeled A-U “reporter” base pairs that

are used to obtain information regarding the dynamic prop-
erties of the helix. The construct was prepared using isotopi-
cally enriched 13C/15N A and U nucleotides and unlabeled G
and C nucleotides, thus rendering the vast majority of reso-
nances in the long helix “NMR invisible.” The helix was de-
signed to be longer than that found in the prequeuosine
riboswitch in order to help decouple internal and overall mo-
tions, thus facilitating quantitative analysis of NMR 13C spin
relaxation and RDC data in describing both the local flexibil-
ity of the ssRNA andmotions of the ssRNA relative to the helix
across the ssRNA–helix junction (Zhang et al. 2006, 2007;
Getz et al. 2007b; Sun et al. 2007).
Analysis of 2D C-H and N-H HSQC NMR spectra con-

firmed that the E-SS construct folds into the predicted sec-
ondary structure (Fig. 1B,C). The imino 1H spectrum (Fig.
1C) revealed the expected number of base pairs within the
helix. This, together with the observation of signature chem-
ical shifts (CSs) for the cUUCGg tetraloop, confirmed that
the hairpin adopts the expected helical conformation. In con-
trast, no imino resonances are observed for the ssRNA tail
(Fig. 1C), indicating that it adopts a conformation lacking
base-pairing interactions, as shown previously for the isolat-
ed ssRNA (Eichhorn et al. 2012a).
The resonances belonging to the reporter 13C/15N-labeled

A and U residues embedded within the helix were assigned

FIGURE 1. NMR chemical shift analysis of the ssRNA–helix junction. (A) Constructs used for
NMR studies and resonance assignments. (B) Overlay of 2D 1H-13CHSQC spectra of SS and E-SS
allows assignment of ssRNA residues (left), while overlay of E-SS and CUAC allows assignment of
helical reporter residues (right). (C) 15N-filtered 1D 1H spectrum shows characteristic imino res-
onances for the helix and cUUCGg tetraloop. (D) Weighted average chemical shift perturbation
(CSP) of ssRNA residues between the SS and E-SS constructs shows large perturbations for
ssRNA–helix junction residues, while A27–A36 have minimal perturbations.
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using a “divide and conquer” strategy similar to that used pre-
viously to assign elongated DNA helices (Nikolova and Al-
Hashimi 2009). Specifically, we prepared an unlabeled
NMR sample of a short (18-nt) helix containing the 5′-
CUAC-3′ tetranucleotide step within the 22-bp helix, flanked
on both 5′ and 3′ ends with two G-C base pairs and capped
with a cUUCGg tetraloop (CUAC) (Fig. 1A,B). Resonances
in this construct were easily assigned using standard 2D
1H-1H NOESY experiments and transferred to the E-SS con-
struct based on excellent spectral overlap (Fig. 1B). As further
confirmation of the assignments, resonances belonging to the
22-bp helix have the expected weakened resonance intensities
comparedwith ssRNA residues, consistent with a slower over-
all tumbling rate (Fig. 1B).

With the exception of junction residues A25 and U26, we
were able to transfer all of the sugar (C1′H1′) and nucleobase
(C6H6, C8H8, C2H2, and C5H5) resonance assignments
from SS to E-SS based on excellent spectral overlap (Fig.
1B). The resonance assignments in E-SS were independently
confirmed using 2D HCN experiments. The resonances be-
longing to A25 and U26 in E-SS were perturbed relative
to SS and were difficult to assign because of severe spectral
overlap in 2D NOESY spectra of E-SS. However, these reso-
nances could be assigned using 2D NOESY spectra acquired
on a construct containing a shorter helix and ssRNA thatmin-
imizes resonance overlap (E-SSshort) (Fig. 2A). Although the
A25 C1′H1′ resonance could be assigned in the E-SSshort spec-
trum, wewere unable to unambiguously assign A25C1′H1′ in
E-SS; however, we did observe several resonances at the ex-
pected position that may reflect the conformational exchange
and heterogeneity that disappears upon ligand binding (see
below).

Impact of helix on ssRNA conformation
and dynamics from CS analysis

We examined how the addition of the hairpin affects the CSs
observed for the SS tail. In Figure 1D, we show the weighted

(1H and 13C) CS differences between E-SS and SS. Significant
CS perturbations (>0.5 ppm) are observed for junction resi-
dues A25 and U26, indicating a change in their local electron-
ic environment due to addition of the hairpin (Fig. 1D). The
specific upfield perturbations in both the 1H and 13C CSs for
base moieties (C5H5, C6H6, C8H8, and C2H2) are consis-
tent with a more helical conformation. Although analysis of
the E-SS NOESY spectra was complicated by severe reso-
nance overlap, in E-SSshort we observe NOE connectivities
between the terminal G1-C14 base pair and the junction
ssRNA residue A25 (G1H1-A25H2, C14H1′-A25H8, and
G1H1′-A25H2), as well as between A25 and U26 (A25H2-
U26H1′, A26H8-U26H5) (Fig. 2B). This indicates that A25
and U26 stack onto the adjoined helix rather than forming
flexible terminal-like residues. Prior studies have shown
that ssRNA nucleotides that overhang the 3′ or 5′ termini sta-
bilize the adjacent helix (O’Toole et al. 2005, 2006). Much
smaller (<0.1 ppm) CS perturbations are observed at other
residues in the ssRNA tail, including the adenine core
(A30–A32), which also suggests a more helical conformation
(Fig. 1B). Interestingly, these CS perturbations appear to
depend on the length of the helix and/or ssRNA and are gen-
erally smaller in E-SSshort (Fig. 2A).
Wenote that in E-SS but not E-SSshort, we observe addition-

al (2x C8H8, 2x C2H2, and 5x C1′H1′) resonances that need
to be accounted for. These resonances are sharp and have high
intensities, indicating that they belong to highly disordered
residues. They are apparent in freshly made samples and do
not change over time. These resonances are overlapped in
the 1H dimension and could not be unambiguously assigned
in 2D NOESY spectra (Fig. 1B). Furthermore, based on 2D
HCN experiments, two C8H8, two C2H2, and two C1′H1′

of these resonances belong to two adenine residues. The re-
maining three C1′H1′ resonances are clustered near the A25
CS position in the isolated SS construct, indicating the struc-
ture may be experiencing slow conformational exchange on
the NMR timescale at the ssRNA–helix junction. While all
five C1′H1′ resonance positions are consistent with a

FIGURE 2. ssRNA–helix junction stacking interactions and comparison to a preQ1 riboswitch aptamer domain. (A) Comparison of 2D 1H-13CHSQC
spectra (C6H6 and C8H8) for E-SS (black) and E-SSshort (green) allows assignment of ssRNA–helix junction residues. (B) 2D 1H-1HNOESY spectra of
E-SSshort showNOE connectivities between the terminal G1-C14 base pair and ssRNA–helix junction, indicating ssRNA residues stack on the helix. (C)
Comparison of 2D 1H-13C HSQC spectra (aromatic C6H6 and C8H8 and ribose C1′H1′) of E-SS (black) to Bsu preQ1-I riboswitch in the absence
(cyan) and presence (purple) of preQ1 ligand. Additional adenine resonances that were unaccounted for are indicated using an asterisk.
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terminal-like residue, the C8H8 and C2H2 resonances are
similar to those observed for adenine residues within the
A6-tract. Nucleobase C8H8 resonances for these adenine res-
idues are shifted upfield with decreasing temperature, indicat-
ing increased stacking consistent with other adenine residues
within the A6-tract; however, peak intensities do not appear to
significantly change relative to other ssRNA resonances, sug-
gesting the population of this alternative state is not temper-
ature dependent. Interestingly, these adenine resonances are
also observed in spectra of the 36-nt prequeuosine aptamer
in the absence of ligand, but they disappear upon ligand bind-
ing (Fig. 2C). These resonances are therefore unlikely to
arise from UV chemical damage to the RNA (Greenfeld
et al. 2011; Kladwang et al. 2012) or fromN + 1 products dur-
ing in vitro RNA transcription (Milligan et al. 1987; Cazenave
and Uhlenbeck 1994; Pleiss et al. 1998; Helm et al. 1999).
Rather, these additional resonances could reflect an alterna-
tive conformation for adenine residues A25, A27, and A28
near the junction that is in slow exchangewith themajor state.
Integration of adenine resonance volumes suggests that A27
and A28 could be experiencing the exchange due to reduced
volumes relative to other adenine residues within the A6-tract
(data not shown). Analysis of RDCs and 13C relaxation values
measured for these resonances (Supplemental Tables S1, S2)
suggests that these additional resonances belong to disordered
residues, with near-zero RDCs and low R2/R1 values.

Picosecond–nanosecond motions from 13C spin
relaxation

To examine the dynamic properties of E-SS at picosecond-to-
nanosecond timescales, we measured 13C longitudinal (R1)
and transverse (R2) spin relaxation data in E-SS for the nu-
cleobase C2, C6, and C8 carbons as previously described
(Eichhorn et al. 2012a). This allowed us to examine how the
adjoined hairpin impacts local motions in the ssRNA tail, as
well as obtain insights into motions of the ssRNA tail relative
to the helix. Our previous 13C relaxation NMR studies of iso-
lated SS made it difficult to obtain insights into the absolute
amplitudes of internal motions owing to significant cor-
relations between the internal and overall motions and lack
of a frame of reference for characterizing overall motions
(Zhang et al. 2006). In the E-SS construct, the adjoined helix
helps decouple internal and overall motions and provides
a reference for assessing overall motions, making it easier
to measure the absolute level of motions in the ssRNA tail.
This domain-elongation strategy has widely been applied in
studies of RNA systems, but never for an ssRNA tail (Getz
et al. 2007a; Bothe et al. 2011).
In Figure 3A we compare the R2/R1 values measured for

each carbon site in the isolated SS construct with those mea-
sured when adjoining the helix. The R2/R1 values provide a
measure of the extent of internal and overall motions occur-
ring at nanosecond timescales. In the isolated SS, we observe
a pattern in which the central adenine residues A29–A32 are

themost ordered and have the highestR2/R1 values (Eichhorn
et al. 2012a). As residues extend away from the polyadenine
core, the levels of dynamics gradually increase, with maxi-
mum dynamics observed for the terminal residues A25 and
A36 (Eichhorn et al. 2012a). Interestingly, the addition of
the helix does not significantly affect the overall dynamics pat-
tern in the ssRNA tail (Fig. 3A). However, there are two nota-
ble differences. First, while the dynamics of A27 are similar to
that in the isolated SS, there is an abrupt decrease in dynamics
at the junction residues A25 andU26, which have significantly
elevated R2/R1 values that are comparable to those measured
in the reporter A-U base pairs within the helix (Fig. 3A). This
is consistent with CS and NOE data indicating stacking of
these junction residues on the adjoined helix. Thus the pivot
point for dynamics between the ssRNA tail and the helix is not
the point of attachment (A25) but is rather the U26-A27 step,
which is known to be highly flexible and which precedes the
stable A6-tract in the ssRNA tail. Second, the R2/R1 values of
A29–A32 in the A6-tract are significantly larger (about four-
fold) in E-SS compared with SS. This may reflect compara-
tively greater stability within the ssRNA core due to the
addition of the helix, or more likely, it reflects slower overall
tumbling of E-SS compared with SS, which makes it possible
to capture slowermotions within the ssRNA tail. Independent
support for the latter comes from the improved agreement
with motional amplitudes derived from REMD simulations
(see below).
We also compared the 2R2− R1 values for each carbon site,

which is a good approximation for the order parameter S2, de-
scribing the amplitude of motions occurring at rates faster
than the overall molecular tumbling, and which varies be-
tween zero and one for maximum and minimum motions
(Fushman et al. 1999; Hansen and Al-Hashimi 2007). We
computed relative S2 (S2rel) values by normalizing the 2R2−
R1 values for each carbon type (C2, C6, C8) relative to the larg-
est valuemeasured in the stable A-formhelix (Fig. 3B;Hansen

FIGURE 3. Dynamics of ssRNA–helix junction at picosecond–nanosec-
ond timescales using carbon spin relaxation.Comparison ofR2/R1 values
(A) and relative spin relaxation order parameters (S2rel) (B) for E-SS and
SS. The SS S2rel values are scaled relative to E-SS. Shown in open circles are
the S2rel values computed for SS using REMD simulations (Eichhorn et al.
2012a). Dashed lines indicate average R2/R1 values for helical residues
(C2H2, ∼80; C8H8, ∼60; C6H6, ∼40; A) or normalized S2 value (1; B).

Structural dynamics of a single-stranded RNA–helix

www.rnajournal.org 785



and Al-Hashimi 2007). Similar S2rel values of 0.3 are observed
for the polyadenine tract in E-SS and SS, which agrees well
with computed S2rel values from the previous REMD simula-
tions (Eichhorn et al. 2012a). On the other hand, due to the
slowing down of overall tumbling, larger motional ampli-
tudes (lower S2rel values) are observed for residues near the ter-
minal ends, which are in better agreement with the REMD
simulation (Fig. 3B, open circles). Many of these dynamics
observations are mirrored independently in measured RDCs
(see below).

Global structure and sub-millisecond motions
from RDCs

We measured RDCs (Tolman et al. 1995; Tjandra and Bax
1997) to gain further insights in the structural and dynamic
behavior of the ssRNA–helix junction. RDCs depend on the
orientation of a bond vector relative to an order tensor frame
describing the average orientation of an aligned molecule
relative to the applied magnetic field (Tolman et al. 1995;
Tjandra and Bax 1997). They provide long-range structural
information and are also sensitive to motions occurring
over a broad range of timescales (picoseconds tomilliseconds)
(Tolman et al. 1997; Peti et al. 2002; Tolman and Ruan 2006;
Getz et al. 2007a; Bothe et al. 2011; Eichhorn et al. 2012b).

We measured RDCs for base C5H5, C6H6, C8H8, and
C2H2 and ribose C1′H1′ moieties by aligning E-SS in ∼8
mg/mL Pf1 phage (Fig. 4A; Clore et al. 1998; Hansen et al.
2000). Since the elongated helix is expected to be locally rigid
and to partially dominate alignment with its long helical axis
aligned on average nearly parallel to the magnetic field,
nucleobases within the helix are expected to be aligned nearly
perpendicular to the principal direction of order (Szz) de-
scribing the average direction of the molecule relative to
the magnetic field (Zhang et al. 2007). Accordingly, the C-
H RDCs measured in the nucleobases and sugars have the
expected positive and negative values, respectively.

Toward the ssRNA tail, the residue-specific trends in the
RDCs are similar to those observed with 13C spin relaxation.
The magnitude of RDCs measured for junction residues A25
and U26 approaches those of the helical residues, consistent
with stacking of these residues on the helix and with localiza-
tion of the pivot points for motions between the ssRNA tail
and helix not at the point of attachment (A25) but rather at
the U26-A27 step, consistent with the 13C spin relaxation
data. Once again, we observe an abrupt reduction in the mag-
nitude of RDCs measured in A27, and the RDC values subse-
quently increase toward the core of the ssRNA, reaching a near
maximum value at A30, before beginning to reduce again to-
ward the terminal end. This pattern of dynamics is in very
good agreement with those seen by 13C spin relaxation. The
similar signs observed for the base and sugar RDCs in the
ssRNA tail and helix are consistent with the ssRNA tail adopt-
ing a conformation that is near coaxial with the helix.
To gain further insights into the dynamics of the ssRNA–

helix junction, including the orientation and dynamics of the
ssRNA tail relative to the reference helix, RDCs measured in
the helix and ssRNA were subjected to an order tensor anal-
ysis (Losonczi et al. 1999; Bailor et al. 2007). Here, measured
RDCs and an assumed local geometry for a given fragment
are used to determine five elements of an order tensor de-
scribing the alignment of the fragment relative to the applied
magnetic field (Saupe 1968); three Euler angles specify a prin-
cipal ordering frame that describes the average orientation
of the fragment relative to the applied magnetic field; a gen-
eralized degree of order (ϑ) (Tolman et al. 2001) describes the
degree of fragment alignment; and an asymmetry parameter
(η = Syy− Sxx/Szz) describes the asymmetry of alignment. The
relative orientation of fragments can be determined by super-
imposing their respective order tensor frames (Losonczi et al.
1999). The relative ratio of the fragment ϑ values (ϑint = ϑSS/
ϑhelix) describes the extent of interfragment motions and
ranges between zero and one for maximum and minimum
motional amplitudes (Tolman et al. 2001). Comparison of
the fragment asymmetry values can provide insights into mo-
tional asymmetry (Tolman et al. 2001).
We determined order tensors for the helix and ssRNA

fragments assuming idealized A-form helix geometry (Mus-
selman et al. 2006). We previously showed that RDCs mea-
sured in the isolated SS tail can be well described by an A-
form helical geometry (Eichhorn et al. 2012a). To further ex-
amine whether the SS tail adopts an A-form geometry when
appended to a helix, we examined the agreement between
themeasuredRDCs and values predicted using the best-fit or-
der tensor for the following local geometries: (1)A-formhelix,
(2) B-form helix, (3) the average structure obtained from a
previous MD simulation of the SS tail (Eichhorn et al.
2012a), and (4) X-ray structure (3FU2) and (5) NMR
(2L1V) structure of the preQ1-bound RNA (Supplemental
Table S3). Consistent with the 12-nt SS construct, an A-
form geometry showed the best agreement with themeasured
RDCs. As shown in Figure 4B, for both the helical and ssRNA

FIGURE 4. RDC analysis of global structure and dynamics of the
ssRNA–helix junction. (A) RDCs measured in E-SS. Dashed vertical
lines separate the UUCG tetraloop, helical residues, and ssRNA residues.
(B) Comparison of measured RDCs and back-calculated values for the
60-nt E-SS construct using the best-fit order tensor. The correlation
constant (R2) and root mean square deviation (RMSD) are given at
the top.
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tail residues, we observe very good agreement between the
measured RDCs and values back-predicted using the best-fit
order tensor. The root mean square deviation (RMSD) be-
tween measured and predicted values is 1.5 Hz and 2.9 Hz
for helix and ssRNA tail, respectively (Table 1). This com-
pares to an RMSD, normalized to the degree of alignment
of E-SS, of 0.9 Hz for the isolated SS. The order tensor ele-
ments were further examined using “leave-one-out” cross-
validation. Here one measured RDC is omitted from the or-
der tensor determination, and its value is back-predicted us-
ing the order tensor determined using all other RDCs. The
process is repeated each time omitting a different RDC data
point. This validation helps to identify RDCs that may
strongly bias the order tensor. As shown in Figure 4B, we
obtain excellent agreement in this cross-validation analysis
(RMSD = 3.62 Hz) (Fig. 4B). These results suggest that both
the helix and ssRNA tail assume an A-form helix-like
geometry.
As expected, the helix exhibited a larger level of alignment

(ϑhelix = 1.7 ± 0.07 × 10−3) compared with the more flexible
ssRNA tail (ϑSS = 0.85 ± 0.1 × 10−3), yielding a small ϑint =
0.5 value between the two fragments. This small ϑint value
very likely captures both collective mo-
tions of the ssRNA tail relative to the helix
as well as any local motions within the
ssRNA tail. As we discussed for the isolat-
ed SS construct, it is likely that any local
motions in the SS tail correspond to iso-
tropic motions due to partial melting of
the stack, which result in uniform scaling
of the RDCs without significantly affect-
ing their agreement with an A-form ge-
ometry (Eichhorn et al. 2012a).
Next we determined the average rela-

tive orientation of the two fragments by
superimposing their respective order ten-
sor frames. The order tensor frame is
degenerate with respect to 180° rotations
about the Sxx, Syy, Szz principal directions,

resulting in four distinct solutions (which
we will refer to as “initial,” Sxx+ 180°,
Syy+ 180°, and Szz+ 180°) for assembling
two fragments (Al-Hashimi et al. 2000).
We assembled the four conformations
by connecting the backbone heavy atoms
of residueC-1 and examined the resulting
structure for steric clashes. In addition,
we subjected each resulting conformation
to a structure-based calculation of the or-
der tensor using the program PALES
(Zweckstetter et al. 2004; Zweckstetter
2008). Here, the overall alignment frame
of the molecule is predicted based on its
overall shape. The predicted alignment
frames were then compared to those de-

termined experimentally.
The Sxx+ 180° and Syy + 180° conformations are unlikely

to be viable solutions because they result in steric clashes be-
tween the ssRNA tail and the helix (Fig. 5A). Moreover, they
result in overall shapes and PALES-predicted order tensor
frames that deviate somewhat from those determined exper-
imentally (deviations in Szz direction are ∼4° and 7°, respec-
tively) (Fig. 5B). Interestingly, one of the conformations
(Sxx+ 180°) features the ssRNA tail possibly docked into
the helix in a manner reminiscent of the conformation ob-
served for preQ1 bound to ligand (Fig. 5A). However, such
a conformation is unlikely to exist in great abundance given
the very large differences in the CSs observed for residues
in the ssRNA tail between the free and ligand-bound aptamer
structures due to the A6 core transitioning from unpaired nu-
cleotides to forming hydrogen bonds along the minor groove
of the adjacent 3′ helix. While both the “initial” and the Szz+
180° solutions do not lead to significant steric clashes (Fig.
5A), the “initial” conformation leads to favorable stacking be-
tween the ssRNA tail and helix, consistent with observed
NOEs, and also yields slightly better agreement betweenmea-
sured and predicted order tensor frames (deviations in the Szz

TABLE 1. Summary of order tensor parameters

Domain N CN
Q
(%)

RMSD
(Hz) R2 η ϑ × 10−3 ϑint θ ξ

Helix 11 4.37 4 1.5 0.99 0.15 ± 0.04 1.7 ± 0.07 0.5 16 −1
ssRNA 14 2.46 16 2.9 0.95 0.67 ± 0.13 0.85 ± 0.12 ±0.07 ±3

Values are as follows: number of RDCs (N) used in the order tensor analysis; condition
number (CN), defined as the ratio of the largest to smallest singular value in the singular
value decomposition (Tolman et al. 2001); the quality, or Q, factor, which compares the
agreement between calculated (Dcalc) and observed (Dobs) RDCs and is defined as Q = rms
(Dcalc−Dobs)/rms(Dobs) (Cornilescu et al. 1998; Bax 2003); RMSD between experimental
RDCs and RDCs calculated with best-fit order tensor parameters; correlation constant (R2)
between experimental RDCs and values calculated with best-fit order tensor parameters;
asymmetry (η); generalized degree of order (ϑ) computed from order tensor analysis; inter-
helical degree of order (ϑint) between ssRNA and helix; bend angle (θ) between ssRNA and
helix; and twist (ξ) between ssRNA and helix.

FIGURE 5. RDC-derived orientation of the helix and ssRNA tail in the ssRNA–helix junction.
(A) Four degenerate orientations obtained from superimposing order tensor frames determined
for the ssRNA tail and helix. (B) Sauson-Flamsteed map comparing the PALES structure-based
predicted order tensor frames (Sxx, Syy, Szz) and experimental order tensor frames for each of
the four degenerate solutions. (C) Comparison of the degree of alignment for the 12-nt SS
(red) and 60-nt E-SS (black) constructs.
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axis are 2° compared with 6°) (Fig. 5B). This conformation is
characterized by average interhelical bend (βH) and twist (ζ =
αH + γH) (Bailor et al. 2011) angles of∼16° and∼−1°, respec-
tively, indicating that on average the ssRNA tail and the helix
favor coaxial stacking with minimal interhelical twisting.

It is of interest to examine how the addition of the helix af-
fects the overall alignment of the ssRNA tail. We previously
showed that despite adopting on average an A-form-like con-
formation, the experimentally determined Szz axis for SS de-
viates from the helix axis by ∼20° (Fig. 5C; Eichhorn et al.
2012a). Such a deviation was also predicted for SS using
PALES (∼14°) and was attributed to the absence of the com-
plementary strand, which leads to an overall shape with a long
axis that is not coincident with the helical axis. Interestingly,
the addition of the helix to the ssRNA tail results in an Szz di-
rection in E-SS that deviates by as little as ∼10° from the helix
axis for the ssRNA (Fig. 5C). This is again consistent with the
helix adopting a conformation that is nearly coaxial with the
ssRNA tail, resulting in an overall shape that is more coinci-
dent with the common helix axis.

Implications for prequeuosine riboswitch function

The ssRNA sequence used in our study is located in the pre-
queuosine riboswitch as a 3′ overhang. On binding ligand,
the ssRNA tail forms a sharp kink at the first residue (A25)
at the ssRNA–helix junction site and forms a pseudoknot,
where the polyadenine tract forms A-minor interactions to
the helix and 3′ terminal residues base pair to the apical
loop (Kang et al. 2009; Klein et al. 2009; Spitale et al. 2009;
Rieder et al. 2010; Feng et al. 2011). Our studies indicate
that the first two residues of the ssRNA–helix junction stack
upon and extend the helix (Fig. 6). In order to form the bound
conformation, A25 must unstack from the terminal helical
base pair and form a sharp turn. The high level of dynamics
at A27 indicates that the U26-A27 step acts as a pivot point
about which the ssRNA tail moves. U-A dinucleotide steps
have weak stacking energies compared with other dinucleo-
tide steps, whichmay influence the dynamics at this site. A de-

gree of flexibility near the junction site may be necessary in
order to efficiently bind ligand: If the ssRNA rigidly stacks
upon the helix, it may be unable to fold into the pseudoknot-
ted structure. Conversely, if the ssRNA was very flexible in
a random conformation, the large amount of accessible con-
formational space may inhibit efficient ligand binding. In
support of the importance of the pivot point in the prequeuo-
sine riboswitch, a pyrimidine is nearly always observed within
3 nt of the ssRNA–helix junction. A combination of a flexible
junction with an ordered central region likely allows for com-
petent binding in a timely manner while maintaining struc-
tural plasticity to rapidly adopt the bound conformation in
the presence of ligand.

CONCLUSIONS

ssRNA–helix junctions are ubiquitous throughout nature, yet
the structural and dynamic properties of these junctions re-
main poorly understood. Although some studies on short
1- to 3-nt 3′ and 5′ ssRNA overhangs have reported the im-
pact of a ssRNA overhang on helix stability, few studies
have focused on the behavior of ssRNA at the end of a helix.
Our data suggest that the ssRNA tail is partially ordered,
on average adopting an A-form helical-like conformation
that is stacked upon the helix. While the first two residues
A25 and U26 stably stack upon the helix, the ssRNA tail re-
tains a high level of dynamics, particularly at A27, indicating
this residue acts as a pivot point. The degree of order increas-
es along the central polyadenine residues, behaving similarly
to the isolated 12-nt SS construct, with the degree of order
approaching that of the 12-nt SS construct for the last 4 nt
at the 3′ end. The appearance of additional resonances sug-
gests conformational exchange and heterogeneity that may
involve transitions between coaxial and disordered ssRNA
conformations. Our results reveal a high degree of structural
and dynamic complexity at the ssRNA–helix junction, which
involves a fine balance between order and disorder that may
facilitate efficient pseudoknot formation of the prequeuosine
riboswitch on ligand recognition.

MATERIALS AND METHODS

Sample preparation

The 13C/15N A/U-labeled E-SS construct was prepared by in vitro
transcription using T7 RNA polymerase as described previously
(Zhang et al. 2006). The RNA was repeatedly exchanged into
NMR buffer (25 mM NaCl, 15 mM sodium phosphate at pH 6.4,
0.1 mM EDTA) using an Amicon Ultra-4 (Millipore). The final
RNA concentration was ∼0.4 mM. CUAC and E-SSshort constructs
were purchased from Integrated DNA Technologies as a lyophilized
powder at natural abundance. To prepare the sample, the RNA was
dissolved in ddH2O and annealed for 5 min at 95°C followed by
multiple steps of buffer exchange into NMR buffer. The final
RNA concentration was ∼2 mM.

FIGURE 6. Model of the proposed ligand recognition mechanism of
the preQ1-I riboswitch and role of the ssRNA tail in ligand capture, re-
vised from Eichhorn et al. (2012a).
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Resonance assignments

All NMR experiments were performed at 298 K, unless specified
otherwise, on a Bruker Avance 600-MHz spectrometer equipped
with a triple-resonance cryogenic (5-mm) probe. NMR spectra
were analyzed using NMRDraw (Delaglio et al. 1995) and Sparky 3
(Goddard and Kneller 2004). The 1H, 13C, and 15N resonances in
E-SS were assigned using standard homonuclear and heteronuclear
2D experiments as well as a “divide and conquer” strategy to assign
helical resonances. The CUAC construct was assigned with the
1H-1H NOESY experiment using a mixing time of 250 msec. The
2D 1H-1H NOESY spectra were supplemented with 2D HCN exper-
iments to correlate nucleobase H6/H8 to ribose C1′H1′ through the
shared N1/N9 atom.Weighted CS perturbation data were calculated
using the equation D =

�����������������������
(DdH )2 + (0.25DdC)2

√
, where ΔδH and

ΔδC are the CS differences in proton and carbon dimension, respec-
tively (Cavanagh 2007).

Carbon spin relaxation

Longitudinal (R1) and transverse (R2) carbon relaxation data for the
nucleobases (C2, C6, and C8) were measured as described previous-
ly (Hansen and Al-Hashimi 2007). Due to significant differences in
the relaxation properties between the elongated helix and the
ssRNA, relaxation delays were optimized to each domain. The relax-
ation parameters used are as follows (in msec): 20, 160, 320, 400 (in
duplicate), and 480 for R1 and 4, 16, 40 (in duplicate), 60 (in trip-
licate), and 80 (in duplicate) for R1ρ. Relaxation delays were per-
formed in an interleaved manner with alternating short and long
relaxation delays. R1 and R2 rates are listed in Supplemental Data.
The measured R1 and R2 values were used to compute relative

order parameters (Lipari and Szabo 1982) using S2 = (2R2− R1)
(Dethoff et al. 2008) and normalized to yield a relative order param-
eter (S2rel) describing the relative degree of order within a molecule
ranging from zero to one, where zero and one represent the mini-
mum and maximum order, respectively. The S2rel values were nor-
malized against the helical residues with the highest values: A-30
(C8), A-40 (C2), and U-19 (C6).

Measurement and order tensor analysis of RDCs

Base and sugar 1H-13C splittings were measured from the difference
between the upfield and downfield components of the 1H-13C
doublet along the 1H component using the narrow transverse relax-
ation-optimized spectroscopy (TROSY) component in the 13C di-
mension as implemented in 2D 1H-13C S3CT-heteronuclear single
quantum correlation (HSQC) experiments (Meissner and Sorensen
1999). The measured 2H splitting was ∼8 Hz in the presence of ∼8
mg/mL Pf1 phage (Asla Biotech). Idealized A-form structures were
constructed using Insight II (Molecular Simulations) correcting
the propeller twist angles from +15° to −15° using an in-house pro-
gram, as previously described (Bailor et al. 2007). The measured
RDCs are listed in the Supplemental Data. The experimental error
was estimated to be ∼3 Hz, determined by repeated measurements
of the weaker helical resonances.
RDCs from the elongated helix and 3′ ssRNA tail were indepen-

dently subjected to order tensor analysis using idealized A-form he-
lices (Bailor et al. 2007). Previous NMR studies of the 12-nt ssRNA
showed that the ssRNA can be modeled as an idealized helix for

RDC order tensor analysis (Eichhorn et al. 2012a). Briefly, the mea-
sured RDCs and idealized A-form helices were used to determine the
best-fit order tensors for both helical and ssRNA domains using sin-
gular value decomposition, implemented by the in-house written
program RAMAH (Zhang et al. 2007). Another in-house program,
Aform-RDC, was used to determine the order tensor errors due to
inherent structural noise as well as RDC uncertainty (Musselman
et al. 2006). The final RNA structure was assembled by rotating
each domain into the principal axis system (PAS) of each best-fit or-
der tensor and assembling the two helices. RDCs from tetraloop res-
idue U-26, as well as the terminal end residues A35-A35, were
excluded from analysis due to a high level of dynamics as observed
in 13C spin relaxation measurements. The interhelical angles were
calculated using an in-house program as previously described
(Bailor et al. 2007).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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